La Torbiera del Lago Culino (Alpi Orobie, Italia settentrionale): aspetti ecologici e demografico-strutturali della vegetazione

ROBERTO FERRANTI* e FRANCO ZAVAGNO**

* Piazza M. V. Agrippa 4, I-20141 Milano.
** Via Varese 12, I-20010 Bareggio (MI).

RIASSUNTO - E' stata effettuata un'indagine vegetazionale alla torbiera del Lago Culino, ubicata a 1959 m s.l.m., sul versante sinistro della Val Gerola (provincia di Sondrio). Sono stati analizzati, in particolare, gli aspetti demografico-strutturali delle cenosi e i principali parametri morfometrici delle specie più rappresentative, unitamente ad alcuni caratteri del suolo (pH, quantità di nutrienti e di sostanza organica, composizione specifica della torba). Il rilevamento della vegetazione è stato effettuato mediante esecuzione di transecti di differente ordine di grandezza e mappatura su superfici standard di 0,25 m². Il confronto dei dati relativi alle specie dominanti (Carex irrigua, Eriophorum angustifolium, Sparganium angustifolium), presenti in differenti tipi di vegetazione, ha evidenziato l'optimum ecologico per ognuna di esse, da collegare principalmente alla disponibilità idrica e alle caratteristiche del substrato di crescita. Densità, taglia degli individui e grado di fertilità risultano, in particolare, i parametri più significativi nel definire l'optimum delle specie, anche in relazione ai fenomeni di competizione intra- e interspecifica. L'analisi del deposito torbosco ha inoltre evidenziato variazioni tendenzialmente cicliche nel contenuto di nutrienti e di sostanza organica in funzione della profondità, presumibilmente per il ripetersi nel tempo di episodi di alluvionamento.

Parole chiave: Alpi Orobie, provincia di Sondrio, torba, torbiera, vegetazione.

ABSTRACT - The Lake Culino bog (Orobic Alps, Northern Italy): ecological structural and demographic characters of vegetation. This paper described a vegetational study of the Lake Culino bog (1959 m a.s.l.), found on the left side of Val Gerola, province of Sondrio. Demographic and structural characters of plant communities and the main morphometric parameters of representative species were studied, as well as some features of the soil (pH, nutrients and organic content, peat composition). The analysis of vegetation consisted of transects of various lengths and mapping standardized areas of 0,25 m². Data about the dominant species present in the different kind of vegetation (Carex irrigua, Eriophorum angustifolium, Sparganium angustifolium), indicates that their ecological optimum is mainly related to
water availability and soil features. The density of plant communities, as well as the size and fertility of plants, are the most important parameters defining the species' optimum and features of inter- and intraspecific competition. Furthermore, the analysis of peat layers shows cyclic changes in nutrients and organic matter amount in relation to depth, probably due to repeated flooding events.

Key words: Orobie Alps, Province of Sondrio, peat, bogs, vegetation.

Area di studio

ASPETTI GEOLOGICI E GEOMORFOLOGICI

La Val Gerola è situata sul versante settentrionale del settore occidentale delle Alpi Orobie, in provincia di Sondrio (Lombardia, fig. 1), nella zona di transizione tra la fascia prealpina e quella alpina propriamente detta (Alpi Retiche).

Il Lago Culino, a 1959 m s.l.m., è ubicato verso la testata della valle del Rio Valmala, tributaria della Val Gerola, tra i paesi di Rasura e Pedesina, su una soglia probabilmente di origine morenica, al pari di altre circostanti che si presentano però ormai pressoché interrate.

![Diagram](image)

Fig. 1. Ubicazione dell’area di studio (riquadro ombreggiato).
Tutto il territorio della Val Gerola deve infatti il suo aspetto attuale quasi esclusivamente al modellamento glaciare, in particolare di epoca würmiana, e a quello fluviale successivo. I circhi e le spianate vallive sono spesso occupati da bacini lacustri ancora attivi, alcuni naturali (Piazzotti, Rotondo, Zancone), altri sbarrati da dighe (Pescegallo, Inferno, Trona); sono frequenti le torbiere e le praterie umide, talora con piccoli specchi d’acqua residui, a testimonianza di antichi laghi colmati o in via di colmamento.

Sul lato meridionale del lago vi è un’area torbosa di discreta estensione, che dalla riva si espande verso il centro del lago; il processo di occlusione è favorito dalla ridotta profondità del corpo idrico, in gran parte occupato da un fitto popolamento di Sparganium angustifolium. Il lago è alimentato in superficie da un torrente che, appena a monte, è interessato da un’opera di captazione; altre probabili infiltrazioni sotterranee, difficilmente quantificabili, sono presenti in prossimità della torbiera stessa. L’area circostante è caratterizzata da boschi radi di larice e da rodoro-vaccinieti, frequentemente sostituiti da estese superfici a pascolo (nardeti), praticato durante la stagione estiva. Dalla sponda meridionale il lago si raccorda al blando pendio circostante attraverso una stretta striscia pianeggante larga circa 2 m; questa zona di transizione, inondata in modo irregolare, è improntata da vegetazione tendenzialmente igrofila (cariceti s.l.), soggetta però a intenso calpestio, e si presenta come un mosaico di zolle discontinue e pietre messe a nudo dall’asportazione del cotico.

CLIMA

I dati disponibili consentono di mettere in luce alcune differenze in relazione al gradiente altitudinale e alla diversa esposizione dei versanti. In fig. 2 sono riportati i diagrammi climatici (termoiodogrammi secondo Gaussen e Bagnouls, climogrammi di Péguy) per le stazioni di Gerola Alta, Lago Trona, Lago Inferno (periodo 1955-1984); i dati sulle precipitazioni sono

Fig. 2. Diagrammi climatici.
Per quanto concerne le precipitazioni, esse risultano abbondanti, sempre superiori a 1.400 mm annui. Il regime (CASATI e PACE, 1992) appare al limite tra il tipo continentale, con il massimo di precipitazioni nei mesi centrali dell’anno e con un minimo invernale, e il tipo prealpino con due massimi in primavera e in autunno. Risulta piuttosto evidente anche il gradiente altitudinale, con le stazioni di Lago Trona e Lago Inferno che sfiorano o raggiungono i 2.000 mm/anno, per effetto dell’orografia.

Per le temperature si conferma ovviamente il gradiente altitudinale; in particolare sui valori estivi, piuttosto bassi, ha un ruolo non secondario la frequente nebbiosità che tende ad attenuare il riscaldamento solare.

Nessuna delle stazioni ha periodi di aridità climatica, in quanto la curva termica è sempre di molto inferiore a quella ombrica (cfr. termoudogrammi di fig. 2); secondo la classificazione bioclimatica di TOMASELLI et al. (1973), rientrano tutte nella Regione axerica fredda.

In fig. 3 sono riportati i dati relativi alla nevosità: altezza media mensile del manto nevoso, numero medio mensile di giorni con precipitazioni nevose, numero medio mensile di giorni di permanenza del manto nevoso. I dati sono limitati a 10 anni di osservazioni (1964-1973) ed ai soli mesi da ottobre a maggio (BELLONI e PELFINI, 1990). Il massimo innevamento viene raggiunto in primavera (febbraio-aprile), in accordo con il netto aumento di precipitazioni che si ha a partire da marzo, rispetto ai minimi invernali. Questi dati possono aiutare a comprendere i limiti imposti alla vegetazione dalla persistenza della neve: ad esempio al Lago Inferno, in maggio quando ormai prevalgono i giorni senza gelo, il manto nevoso ancora consistente (oltre 150 cm di media) impedisce tuttavia la ripresa vegetativa. In tali condizioni la stagione utile non supera i 3 mesi, considerato che, già ad ottobre, la temperatura media è di soli 2,5°C.

Fig. 3. Dati relativi alla nevosità.
Materiali e metodi

RILEVAMENTO VEGETAZIONALE

E’ stato inizialmente tracciato, a partire dalla riva, un macrotransetto di 20 m di lunghezza allineato in direzione 15° (NNE), comprendente tutti i tipi di vegetazione individuabili (fig. 4). Nell’ambito di ogni tipo sono state compiute rilevazioni secondo due modalità.

1. Tracciatura di un transetto lineare di 50 cm, allineato secondo l’orientamento del macrotransetto, lungo il quale sono state rilevate tutte le piante presenti entro una fascia di ±5 cm ai lati della linea tracciata. Per ogni transetto sono stati riportati:
 • alcune osservazioni generali sul profilo del suolo;
 • le specie rinvenute, la posizione e le dimensioni di ogni singolo individuo;
 • i dati morfometrici relativi agli individui delle specie maggiormente rappresentate;
 • i dati relativi alle analisi del suolo, sia di tipo macroscopico (composizione grossolana della torba), sia di tipo chimico e fisico.

2. Delimitazione di un’area-campione di 0,25 m² di superficie (quadrato di 50 x 50 cm) e mappatura della vegetazione. Questo tipo di rilevamento è stato eseguito solo una volta per ogni tipo di vegetazione: oltre ad A (erioforeto), sono stati scelti lo sparganieto G e gli aggallati C e D che, seppur fisicamente contigu, evidenziavano alcune differenze significative. Sono state registrate eventuali variazioni di pendenza, quindi si è proceduto a:
 • contare e rilevare la posizione dei singoli individui presenti (per le piante vascolari);
 • misurare i principali parametri morfometrico-strutturali (in particolare lunghezza totale della pianta, numero e lunghezza delle foglie) di ogni individuo campionato;
 • rilevare la distribuzione e la composizione della copertura muscinale.

Le misurazioni sui campioni vegetali non effettuabili in campo sono state eseguite in laboratorio su materiale appena raccolto e conservato in cella frigorifera.

Stante il diverso habitus delle specie rilevate, e al fine di uniformare i dati, sono state considerate come “individuo” tutte le porzioni epigee isolate e.distinte. E’ evidente peraltro che, in alcuni casi (Eriophorum, Sparganium), si tratta di parti di uno stesso individuo unite da lunghi stoloni ipogei. Tuttavia, in particolare per le considerazioni sulla densità e sugli effetti della competizione, si è ritenuto corretto operare in questo modo.
Nelle mappe è riportata la posizione di ogni singolo “individuo”, ma non la superficie occupata in proiezione dalle parti epigee. Le dimensioni delle piante vascolari sono state misurate nel seguente modo:

a) *Eriophorum angustifolium* - *Carex irrigua*: la lunghezza totale è calcolata dalla base del manicotto di guaine basali del fusto fino all’apice della foglia maggiore, nelle piante sterili, o all’apice della brattea fiorale più lunga nelle piante fertili.

b) *Sparganium angustifolium*: la lunghezza è calcolata dalla base della pianta all’apice della foglia più lunga, sia negli individui sterili che in quelli fertili.

Analisi pedologiche

Mediante una sonda pedologica sono stati eseguiti, per ogni “microtransetto”, dei prelievi di campioni di suolo a profondità diverse. Il numero di campioni raccolti per ognuno è variabile, principalmente in funzione della profondità del profilo.

I campioni di suolo, raccolti e fatti essiccare all’aria, sono stati preparati per le analisi attraverso una prima macinatura e setacciatura a 2 mm e, successivamente, una parte del materiale è stato ulteriormente macinato e setacciato a 0,5 mm. I parametri chimici e fisici analizzati sono:

- pH
- Contenuto di sostanza organica
- Tessitura
- Azoto totale
- Fosforo totale
- Fosforo assimilabile

Per la maggioranza di essi si sono utilizzate le metodiche normalizzate previste dalla S.I.S.S. (1985). Tuttavia è ben presto emerso che alcune di esse dovevano in qualche modo essere modificate, perché nella maggior parte dei casi il contenuto di sostanza organica nei campioni era così elevato da conferire caratteri di densità e peso specifico troppo bassi ed incompatibili con le procedure tradizionali.

1. **pH**

 È stato determinato in acqua distillata con pH-metro ad elettrodo. Non è stato quasi mai possibile rispettare la prevista proporzione di 1:2,5 tra peso del materiale e di acqua: in queste condizioni il campione prendeva l’aspetto di “poltiglia” semisolida, non omogeneamente idratata anche dopo un giorno di riposo e non agitabile al momento della misura. Si è dovuto così, quasi sempre, aumentare la diluizione sino a 3:50.
2. Contenuto di sostanza organica

E' stato inizialmente determinato con il metodo Walkley & Black che prevede, come primo passo, l'ossidazione del carbonio organico a CO₂ con dicromato di potassio in presenza di H₂SO₄. I risultati discordanti spesso ottenuti, anche dopo una seconda analisi, hanno fatto dubitare dell'efficacia di questo metodo per campioni con così elevato tenore di sostanza organica, per la quale, evidentemente, non si ha la certezza della completa demolizione. E' stato pertanto determinato mediante incenerimento in muffola del campione di suolo, a 500°C per 3 ore, dopo essicamento in stufa a 105°C. Un'ulteriore conferma è venuta da un secondo trattamento in muffola, eseguito per alcuni campioni, che ha dato esito praticamente identico al primo.

3. Tessitura

Anche l'analisi della tessitura “reale”, secondo il metodo del levigatore a micropipetta, previa distruzione della sostanza organica con perossidi a caldo, ha dato grossi problemi per il lunghissimo tempo richiesto, senza peraltro la certezza di una demolizione completa. Non si è pertanto proceduto all'analisi granulometrica dato che, a temperature elevate, le particelle più fini tendono a “vetrificare” e ad aggregarsi in granuli più grossi, con maggiore velocità di sedimentazione.

4. Azoto totale

E' stato valutato con il tradizionale metodo Kjeldahl, modificando in parte il tempo di mineralizzazione a caldo e la quantità di H₂SO₄ aggiunto al campione in questa fase.

5. Fosforo assimilabile

E' stato analizzato con il metodo Bray, ritenuto più idoneo, rispetto al metodo Olsen, per campioni a pH molto acido come quelli in oggetto. La lettura finale è stata eseguita allo spettrofotometro.

6. Fosforo totale

E' stato analizzato tramite incenerimento in muffola dei campioni secchi (asciugati in stufa a 105°C), il trattamento delle ceneri con HCl e procedendo poi come per il metodo Bray.

Sui campioni di suolo sono state eseguite alcune indagini ulteriori per la valutazione di caratteri macroscopici. In particolare si è proceduto a:
- analisi sommaria del residuo dopo setacciatura a 2 mm, per valutare la natura del materiale più grossolano presente, eseguita per tutti i campioni;
• valutazione quali-quantitativa della composizione del materiale torboso che forma gli aggallati. A tale scopo è stata conservata, al momento della prima macinatura del materiale, una piccola porzione di campione integro, prelevandone poi una quantità fissa pari a circa 5 cm3. Su questo campione, opportunamente idratato, si è proceduto ad un’analisi di dettaglio sulla componente brioftica: di 100 frammenti, prelevati a caso, si è identificata la specie di appartenenza e sono state misurate le dimensioni utilizzando uno stereomicroscopio con oculare graduato (20-40x). Ciò ha consentito di valutare la composizione della torba e il grado di disfacimento del materiale vegetale in funzione della profondità di campionamento.

Risultati

ANALISI VEGETAZIONALE

A partire dalla riva si succedono (fig. 4):

A. popolamento fitto ad *Eriophorum angustifolium*, in acqua poco profonda (ca. 20 cm), su fondo ciottoloso;

B. popolamento a *Sparganium angustifolium*, in acqua bassa su substrato melmoso;

C. aggallato a briofta, eriofori e carici a pelo d’acqua, con dosso marginale di sfagni;

D. aggallato in continuità con il precedente, ma più compatto e a maggior densità di macrofite;

E. popolamento a *Sparganium angustifolium*, in un’ansa tra gli aggallati ma in continuità con il lago, fondale a ca. - 0,5 m con presenza di massi ricoperti da fanghiglia;

F. aggallato a carici e briofta in continuità con D, ricco in sfagni e con cintura marginale a *Carex fusca*;

G. popolamento a *Sparganium angustifolium* a lago.

Per una più completa descrizione dell’area indagata in Tab. 1 sono elencate tutte le specie rinvenute, suddivise secondo un criterio di ordine strutturale. Di seguito vengono descritti in dettaglio i singoli tipi di vegetazione analizzati.

Fig. 4. Macrotransetto attraverso la torbiera del Lago Culino.
Erioforeto A

Inondato (ca. 20 cm d’acqua), sul fondo si rinviene una notevole quantità di resti di foglie a differente grado di disfacimento. Al piede delle piante, abbastanza ben distribuiti, si sviluppano lassi cuscini prostrati di *Warnstorfia exannulata*, di 2-3 cm al massimo di lunghezza.

Substrato

Strato superficiale: prevalgono resti di *Eriophorum* (parti basali di fusti con guaine sfibrate, frammenti di guaine e di stoloni, radichette) e piccoli ammassi di *Warnstorfia exannulata*.

Profondità di 15 cm: predominanza di parti sotterranee di *Eriophorum* (radichette e stoloni), più rare guaine basali e porzioni di fusti.

Transetto (fig. 5)

Si contano ca. 22-23 individui, in maggioranza sterili; da una densa e intricata trama di foglie emergono gli esemplari fertili, alti mediamente 60-70 cm e tutti con 4 capolini fiorali. Dal fondo sommerso spuntano alcuni ciuffi di foglie ancora inguinate, all’estremità degli stoloni ipogei.

Lo strato di suolo è sottile, costituito da materiale organico poco alterato e immerso in una matrice di fine fanghiglia.

Tabella 1. Elenco floristico dell’area indagata.

<table>
<thead>
<tr>
<th>Strato arbustivo</th>
<th>Calluna vulgaris, Rhododendron ferrugineum, Vaccinium gaultherioides.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strato erbaceo</td>
<td>Agrostis rupestris, Carex canescens, Carex fusca, Carex irri-</td>
</tr>
<tr>
<td></td>
<td>gua, Carex oederi, Carex stellulata, Deschampsia caespitosa,</td>
</tr>
<tr>
<td></td>
<td>Epilobium palustre, Eriophorum angustifolium, Eriophorum</td>
</tr>
<tr>
<td></td>
<td>vaginatum, Festuca nigrescens, Larix decidua (plantula),</td>
</tr>
<tr>
<td></td>
<td>Leontodon helveticus, Ligusticum nutellina, Luzula sudectica,</td>
</tr>
<tr>
<td></td>
<td>Nardus stricta, Pedicularis kernerii, Pinguicula cfr. vulgaris,</td>
</tr>
<tr>
<td></td>
<td>Potentilla erecta, Trichophorum caespitosum, Viola palustris.</td>
</tr>
<tr>
<td>Strato muscinale</td>
<td>Cephalozia bicuspidata, Gymnocolea inflata, Odontoschisma</td>
</tr>
<tr>
<td>(epatiche + muschi)</td>
<td>elongatum, Riccardia incurvata, Scapania irrigua; Aulacom-</td>
</tr>
<tr>
<td></td>
<td>nium palustre, Calliergon stramineum, Dicranum bonjeani,</td>
</tr>
<tr>
<td></td>
<td>Pohlia nutans, Polytrichum commune, Sphagnum angustifo-</td>
</tr>
<tr>
<td></td>
<td>lium, Sphagnum compactum, Sphagnum girgensohnii, Spha-</td>
</tr>
<tr>
<td></td>
<td>gnum magellanicum, Sphagnum russowii, Sphagnum subse-</td>
</tr>
<tr>
<td></td>
<td>cundum, Sphagnum warnstorfi, Warnstorfia exannulata.</td>
</tr>
</tbody>
</table>
Fig. 5. Transetto attraverso l’erioforeto A.
Mappa (fig. 6)
La densità degli individui di Eriophorum è notevole (217), con disposizione in esemplari isolati o, più spesso, in gruppetti di 2-pochi; ciò è verosimilmente dovuto alla propagazione per stoloni che, in questa specie, sono però piuttosto brevi. Si nota una certa rarefazione allontanandosi da riva, dove la profondità dell’acqua aumenta, seppur leggermente, e il fondale si fa più melmoso.
Gli esemplari di Sparganium angustifolium sono rari (11), anch’essi si presentano spesso ravvicinati, date le medesime modalità di riproduzione per via vegetativa.

Dati morfometrici
Eriophorum angustifolium
Campione di 217 individui, di cui 188 sterili e 29 fertili. Dalle curve di distribuzione riportate nei grafici di fig. 7, si possono ricavare le seguenti informazioni:
 a) la lunghezza degli individui fertili risulta ovviamente maggiore;
 b) il numero di foglie è mediamente maggiore negli individui sterili: questi possiedono infatti una densa rosetta di foglie che fuoriescono dal manicotto di guaine basali, mentre negli esemplari fertili le foglie sono poche e limitate alla metà inferiore del fusto;
 c) la produzione di stoloni sembra limitata a pochi individui, mentre più numerosi sono quelli fertili; le condizioni sembrano quindi privilegiare la riproduzione gamica rispetto a quella per via vegetativa;
 d) la lunghezza degli stoloni è maggiore in quelli verdi, dato che in genere essi indicano uno stadio di sviluppo più avanzato. Le lunghezze misurate danno inoltre un’idea delle distanze a cui si situano i germogli rispetto alla pianta “madre”.
Sparganium angustifolium
Campione di 11 individui, tutti sterili. Le curve di distribuzione dei parametri sono visibili nei grafici di confronto di fig. 8.

Sparganieto B
Il popolamento si sviluppa su un battente di circa 20 cm o poco più, il fondale è costituito da fanghiglia fine, con pietre sparse. Il tratto sommerso è costituito da una lettiera di foglie, a diversi stadi di disfacimento, e di fanghiglia fine in sospensione.

Substrato
Strato superficiale: resti di foglie, in parte ancora verdi, di guaine sfilbrate, stoloni e radici di Sparganium a diverso grado di disfacimento.
Profondità di 10-12 cm: pochissimi frammenti di rami legnosi (0,5-2 cm).

Fig. 6. Mappa dell’erioforeto A.
Fig. 7. Distribuzione dei parametri morfometrico-strutturali di *Eriophorum angustifolium* nell’erioforeto A.
Fig. 8. Distribuzione dei parametri morfometrico-strutturali di *Sparganium angustifolium*.
Transetto (fig. 9)

Si nota una tendenza degli individui di *Sparganium* a raggrupparsi, dovuta anche in questo caso alla produzione di stoloni ipogei, molto più allungati rispetto a quelli di *Eriophorum angustifolium*: l’esemplare riportato nel riquadro di fig. 9 aveva uno stolone di 20 cm di lunghezza.

Il suolo ha caratteristiche differenti da quelle dell’erioforeto: ad eccezione dello strato superficiale, dove abbondano resti vegetali in disfacimento, la porzione inferiore è omogeneamente costituita da fanghiglia finissima, compatta e di consistenza quasi plastica.

Fig. 9. Transetto attraverso lo sparganieto B.
Dati morfometrici

Sparganium angustifolium

Campione di 10 individui, di cui 7 sterili e 3 fertili. Confronta anche le curve di distribuzione nei grafici di confronto di fig. 8.

Aggallato C

La vegetazione è caratterizzata da un fitto tappeto di briofite a copertura continua, situato appena al di sopra del pelo dell’acqua, ad eccezione di un dosso di sfagni (10-12 cm di altezza) nel tratto a contatto con B. Questo tappeto, di colore brunastro, è costituito da una mescolanza di *Calliergon stramineum* e *Warnstorfia exannulata*, localmente di *Sphagnum subsecundum*. Le piante vascolari si limitano a sparsi esemplari di *Carex irrigua*, con diversi cespi disseccati o sofferenti, *Eriophorum* e *Sparganium* di taglia ridotta.

L’aggallato sembra in fase di espansione verso il lago, dove lo spessore si riduce ed è in grado di sostenere appena il peso di una persona; già a 25 cm circa di profondità si rinvengono fanghiglia e materiale vegetale decomposto mescolati in una matrice semiliquida priva di consistenza.

Substrato

Profondità di 25 cm: come il precedente, ma la torba evidenzia un più avanzato stadio di decomposizione, frammenti di *Cyperaceae* in minore quantità e più piccoli.

Tranetto (fig. 10)

Gli individui di *Carex irrigua* presenti, tutti sterili, appaiono di dimensioni ridotte, quasi soffocati dal tappeto di briofite e alcuni in condizioni di semi-essiccamiento.

Mappa (fig. 11)

Si evidenzia la copertura pressoché continua del popolamento misto a *Calliergon stramineum* (prevalente) e *Warnstorfia exannulata*, mentre *Sphagnum subsecundum* è assai meno abbondante e più discontinuo. Ciò potrebbe indicare una fase di regressione di quest’ultimo, non in grado di competere vantaggiosamente con le altre due specie. La presenza di sfagni nel dosso a margine dell’aggallato ne sottolinea il carattere pioniero, che
facilita l’iniziale processo di espansione ma a cui segue una perdita di competitività. Questo tratto di aggallato è di origine recente, come testimoniano l’ancora sottile strato di torba e la presenza di piccoli individui di *Sparganium angustifolium*, quanto resta della vegetazione acquatica preesistente. La specie vascolare più abbondante è *Carex irrigua*, che si presenta in gruppi ravvicinati di 2-3 individui, appartenenti probabilmente a un unico cespo.

Dati morfometrici

Carex irrigua

Campione di 37 individui, di cui 1 solo fertile. Confronta anche le curve di distribuzione nei grafici di confronto di fig. 12.

Sparganum angustifolium

Campione di 7 individui, tutti sterili. Confronta anche le curve di distribuzione nei grafici di confronto di fig. 8.

![Diagram](image)

Fig. 10. Transetto attraverso l’aggallato C.
Eriophorum angustifolium

Campione di 3 individui, tutti sterili e di piccole dimensioni, non analizzato per la scarsa significatività numerica.

Fig. 11. Mappa dell’aggallato C.
Fig. 12. Distribuzione dei parametri morfometrico-strutturali di *Carex irrigua*.
Aggallato D
L’aspetto generale è molto simile al precedente, con il quale è in continuità; la superficie è piana, ad eccezione di alcune bombature appena accennate. La copertura bariofita è ancora dominante, ma presenta piccole lacune; mancano gli sfagni o sono confinati in piccolissime aree ai margini dell’aggallato. Le piante vascolari sono rappresentate soprattutto da Carex irrigua ed Eriophorum angustifolium, con isolati cespi di Carex canescens e, ancora più occasionale, Carex stellulata.
Il substrato, completamento organico, ha uno spessore di circa 1 m, ricco di fibre vegetali ancora ben strutturate (soprattutto briofite); sebbene intriso, è compatto e in grado di reggere agevolmente il peso di una persona.

Substrato
Strato superficiale: in generale come quello dell’aggallato C; prevalgono frammenti di stoloni e di radici sottili di Cyperaceae, poche guaine sfibrate e poche porzioni di fusti di Eriophorum.
Profondità di 5-15 cm: come il precedente, ma netta dominanza di torba di briofite, ad uno stadio iniziale di disfacimento. Abbondanza di resti di sottili stoloni anneriti.
Profondità di 15-20 cm: come il precedente.
Profondità di 20-25 cm: come il precedente, ma resti di Cyperaceae più sfatti e frammentati e assenza di fusti di Eriophorum riconoscibili. Presenza cospicua di frammenti di rami e parti legnose di varie dimensioni.
Profondità di 25-30 cm: come il precedente, ma torba mista di briofite e Cyperaceae, omogenea come aspetto e dimensioni medie dei frammenti, ad uno stato di disfacimento più avanzato.
Profondità di 50 cm: come il precedente. Qualche porzione basale di fusto di Eriophorum ancora riconoscibile e alcuni piccoli frammenti di legno.
Profondità di 75 cm: come il precedente. Ancora qualche porzione di fusto di Eriophorum riconoscibile ed un grosso frammento di legno, lungo 3,5 cm.
Profondità di 1 m: torba mista di briofite e Cyperaceae, nel complesso omogenea, ma dominanza di resti di Cyperaceae che, evidentemente, risultano più resistenti al processo di disfacimento. 2-3 frammenti di legno (1-2 cm di lunghezza).
Fig. 13. Transetto attraverso l’aggallato D.
Fig. 14. Mappa dell’aggallato D.
Transetto e mappa (figg. 13 e 14)

La copertura briofítica è compatta, ma con qualche lacuna: Calliergon stramineum è quantitativamente prevalente rispetto a Warnstorfia exannulata, mancano gli sfagni. La densità di Eriophorum angustifolium e Carex irrigua è nettamente maggiore rispetto a C; gli individui appaiono inoltre meglio sviluppati e, soprattutto in Carex irrigua, spesso fertili. La mappa mette in luce la diversa distribuzione degli individui delle due specie: Carex irrigua, cespitosa, è presente in modo puntiforme, con nuclei di più individui aggregati, mentre Eriophorum angustifolium, stolonifero, si rinvie per lo più in individui isolati o appaiati.

Questa porzione di agglittato rappresenta presumibilmente uno stadio più "maturo" del precedente, con deposito torboso più profondo, maggiore copertura erbacea e strato muscinale che, seppur compatto, mostra segni di "senescenza" con piccole lacune e/o zone necrotiche.

Dati morfometrici

Eriophorum angustifolium

Campione di 106 individui, tutti sterili; le curve di distribuzione appaiono nei grafici di confronto di fig. 20.

Carex irrigua

Campione di 99 individui, di cui 88 sterili e 11 fertili; le curve di distribuzione sono riportate nei grafici di fig. 12.

Sparganieto E

Si sviluppa in un piccolo "braccio" di lago in via di occlusione ad opera degli agglittati che lo circondano, ma attualmente ancora in diretta comunicazione con il lago stesso. La densità del popolamento è scarsa e gli individui sono tutti sterili, sebbene molto sviluppati data l’apprezzabile profondità dell’acqua (30-50 cm).

Il fondale è irregolare, probabilmente per la presenza di massi ricoperti da fanghiglia Il suolo sommerso, sebbene più profondo, ha caratteristiche simili a quelle di B (fig. 9). Al piede delle piante vivono ancora, completamente sommersi, sparsi esemplari di Warnstorfia exannulata lunghi pochi centimetri.

E’ stato eseguito il solo transetto (fig. 15), nel quale sono stati conteggiati unicamente 4 individui, tutti sterili.

Agglallato F

Costituisce una sorta di piccolo “promontorio” allungato in direzione del lago ed in continuità con D. Presenta la medesima fisionomia, ma la componente briofítica è data soprattutto da Calliergon stramineum e, in subor-
dine, da *Sphagnum subsecundum*, mentre *Warnstorffia exannulata* compare occasionalmente. I popolamenti di sfagno sono localizzati soprattutto lungo i margini, leggermente sopraelevati rispetto al piano dell’aggallato ed accompagnati da *Carex fusca*, che forma una sorta di “cintura” perimetrale. Sul piano dell’aggallato sono invece presenti quasi esclusivamente individui sterili di *Eriophorum angustifolium* e di *Carex irrigua*.

Fig. 15. Transetto attraverso lo sparganieto E.
Substrato

Profondità di 25-50 cm: come il precedente, ma resti di briofite più abbondanti e di Cyperaceae a un grado di disfacimento maggiore. 1-2 frammenti di legno (0,5 cm circa di lunghezza).

Profondità di 50-75 cm: materiale torboso omogeneo, solo alcuni frammenti di stoloni e di guaine sfibrate in evidenza.

Profondità di 75-100 cm: come il precedente, ma ancora più sfatto e uniforme.

Transetto (fig. 16)

Si può notare la discreta densità degli individui presenti. Il suolo organico è molto sviluppato, al pari di quello osservato nell’aggallato D.

Dati morfometrici

Carex irigma

Campione di 24 individui di cui 23 sterili e 1 solo fertile; la curva di distribuzione appare nei grafici di confronto di fig. 12.

Eriophorum angustifolium

Due soli individui sterili.

Sparganieto G

Si sviluppa in continuità con la plaga che occupa gran parte del lago, la profondità del battente è di oltre 50 cm, il fondale è pianeggiante, ma lo spessore del suolo è variabile, per la probabile presenza di massi sul fondo. Le caratteristiche del suolo non si discostano da quelle degli altri sparganieti: il materiale è finissimo, compattato e non si riscontrano residui vegetali macroscopici, ad eccezione dello strato superficiale.

Substrato

Profondità di 15 cm: piccoli ammassi intricati di radichette e fusticini di briofite; pochi piccoli frammenti di rametti e di legno.

Profondità di 25-50 cm: pochi piccoli frammenti di legno e una pigna di larice.

Profondità di 50-60 cm: presenza solo di abbondanti frammenti di legno di dimensioni molto varie, il maggiore di circa 3,5 cm di lunghezza; un piccolo frammento appare carbonizzato.

Profondità di 75 cm: pochi frammenti di legno e pochi piccoli clasti tutti di circa 0,5 cm.
Transetto e mappa (figg. 17 e 18)

La densità è discreta, viene confermata la tendenza degli individui a distribuirsi in piccoli gruppi secondo le diretrici di sviluppo degli stoloni. Le piante sono tutte sterili, mentre nelle zone circostanti si riscontrano invece individui in piena fioritura (riscontro casuale?).

Fig. 16. Transetto attraverso l’aggallato F.
Non è forse un caso, invece, la consistente area vuota nella zona di contatto con l’aggallato F (settore meridionale), il cui cono d’ombra può interessare il fondale adiacente creando condizioni sfavorevoli allo sviluppo degli *Sparganium*.

Fig. 17. Transetto attraverso lo sparganieto G.
Dati morfometrici

Sparganium angustifolium

Campione di 32 individui, di cui 29 sterili e 3 fertili; le curve di distribuzione sono riportate in fig. 8.

Fig. 18. Mappa dello sparganieto G.
ANALISI DELLE TORBE

Si riportano i risultati delle analisi quali-quantitative sui campioni di torba raccolti nei tre tipi di aggallato, secondo le modalità indicate nei metodi. Viene fornita una descrizione sintetica della composizione dei campioni di torba, e alcuni dati statistici sulle dimensioni dei frammenti della componente briofitica.

Aggallato C

Strato superficiale

Profondità di 25 cm

Aggallato D

Strato superficiale

In maggioranza resti di briofite, ancora molto ben strutturati e riconoscibili. Frammisto ad essi si rinviene materiale di taglia grossolana: guaine basali e stoloni di eriofori, frammenti di foglie sfatte, radici e radichette, parti basali, foglie e frutti di carici.

Profondità di 5-15 cm

Trama del materiale simile al campione precedente, con prevalenza assoluta di frammenti ben strutturati di briofite. I residui più macroscopici sono però di dimensioni minori, o ad un grado maggiore di disfacimento.

Profondità di 15-20 cm

Materiale senza sostanziali differenze rispetto al campione precedente.

Profondità di 20-25 cm

La trama di resti di briofite appare più fine e sfatta, con maggiore presenza di frammenti di fusti (defogliati) e di foglioline singole. Ancora frequenti i frammenti di materiale grossolano, allo stesso grado di disfacimento degli strati precedenti.
Profondità di 25-30 cm
Campione senza sostanziali differenze rispetto al precedente.

Profondità di 50 cm
Torba di briofoite, sempre meno strutturata, abbondano foglie isolate e fusticini completamente defogliati, da attribuirsi probabilmente a Calliergon stramineum. Ancora sparsi residui di Eriophorum, soprattutto porzioni basali ingrossate e frammenti di stoloni, e carici, con frammenti di foglie e qualche ostricello.

Profondità di 75 cm
Materiale senza apprezzabili differenze rispetto al campione precedente, se non per il maggiore grado di disfacimento dei frammenti di briofoite.

Profondità di 100 cm
La trama di briofoite appare sfatta, con prevalenza di frammenti di rametti assai piccoli e defogliati, appartenenti a Calliergon, mentre le porzioni di Warnstorfia risultano più integrate; notevole quantità di foglioline singole di entrambe le specie. Il materiale grossolano è scarso, ma tuttavia sono ancora riconoscibili porzioni basali e frammenti di stoloni di eriofori, ostricelli di carici e una gran quantità di minuscoli frammenti di radichette, foglie e fusti di entrambi.

Aggallato F

Profondità 0-20 cm
Torba costituita in prevalenza da briofoite, con resti ben strutturati e facilmente identificabili, nella cui trama si rinvengono alcune parti basali e stoloni di eriofori, nonché abbondanti frammenti di foglie, fusti, guaine, radichette ed altro appartenenti sia ad eriofori che a carici.

Profondità di 25-50 cm
Non si notano sostanziali differenze rispetto al campione precedente, i frammenti delle briofoite più "delicate" (Calliergon e Sphagnum) appaiono però più piccoli e disfatti.

Profondità di 50-75 cm
La trama di briofoite appare più fine ed omogenea, aumenta il numero di frammenti piccoli, sfatti, defogliati e di difficile identificazione; abbondano le foglie isolate, in particolare quelle degli sfagni. I frammenti macroscopici di Cyperaceae appaiono più ridotti e maggiormente decomposti, tuttavia ancora in parte riconoscibili; sono in prevalenza guaine sfibrate, ostricelli di carici, frammenti di stoloni di eriofori e una quantità notevole di sottili radichette.
Fig. 19. Dati sui frammenti di torba degli aggallati.
Profondità di 75-100 cm

Lo stato del materiale appare simile al precedente, ma l’analisi di dettaglio ha consentito di mettere in evidenza il completo disfacimento dei frammenti di Calliergon e Sphagnum, di cui si nota soprattutto la grande quantità di foglioline isolate e piccolissimi frammenti di rami appena riconoscibili. In condizioni migliori sono invece i frammenti di Warnstorfia, con rametti fogliosi di dimensioni ancora apprezzabili. Il residui di Cyperaceae sono ancora visibili ed identificabili, seppur ad un grado di disfacimento di poco superiore al campione precedente.

In fig. 19 sono riportate le curve di distribuzione dei parametri misurati in queste osservazioni, sia in termini di numero che di lunghezza dei frammenti casualmente campionati.

Conclusioni

ASPETTI DEMOGRAFICO-STRUTTURALI

Analizzando e confrontando fra loro i dati relativi a popolamenti della stessa specie, presenti in differenti condizioni ecologiche e nell’ambito di differenti tipi di vegetazione, è possibile formulare ipotesi circa l’influenza dei principali fattori ambientali sui caratteri morfometrici e demografico-strutturali dei popolamenti.

1. Eriophorum angustifolium (fig. 20)

Il confronto è tra l’erioforeto A (su suolo inondato in prossimità della riva) e l’aggallato D. Nel primo caso, si riconoscono condizioni pressoché ottimali di crescita: maggiore densità, dimensioni superiori, elevata fertilità. Si tratta di un popolamento alquanto eterogeneo: si riscontra infatti un gran numero di individui sterili, di dimensioni medio-piccole, e una “coda” dovuta agli individui fertili di taglia più elevata (fig. 20.1). La distribuzione tendenzialmente bimodale di fig. 20.2 (n. foglie/individuo) indica, da un lato, il numero considerevole di individui con poche foglie, da riferire al campione di individui fertili, e dall’altro il “picco” rappresentativo degli individui sterili molto rigogliosi. Nettamente più regolari sono le distribuzioni riferite all’aggallato, con solo individui sterili, di taglia mediamente inferiore e con numero di foglie che segue un andamento tendenzialmente di tipo normale.

Si ipotizza che, in A, la presenza di un battente di acqua libera favorisca l’affermazione di Eriophorum, che qui denota condizioni ottimali di crescita, soprattutto eliminando la concorrenza delle specie meno igrofile (in particolare le carici).
Fig. 20. Parametri morfometrico-strutturali di *Eriophorum angustifolium*: confronto tra l’erioforeto A e l’aggallato D.
Per contro, nell’aggallato, si registrano dimensioni ridotte e bassa fertilità: la discreta densità può indicare tuttavia una certa potenzialità per la specie, che l’accentuata competizione con altre specie (con particolare riferimento alla densa copertura muscinale) e forse la maggiore acidità del mezzo (cfr. valori di pH in figg. 5 e 21) limitano peraltro fortemente.

2. *Carex irrigua* (fig. 12)

Sono messi a confronto gli aggallati C e D, mentre per F sono state considerate solo le dimensioni generali. In C le carici sono piccole e stentate: le dimensioni ridotte, lo scarso numero di foglie e il minor numero di germogli basali indicano difficoltà di sviluppo e scarsa capacità di affermazione. Questi individui rappresentano forse l’inizio di un processo di colonizzazione che, con il tempo, soprattutto dal momento in cui il substrato diverrà progressivamente più profondo e consistente, procederà piuttosto rapidamente. Come sembrano confermare i migliori condizioni generali riscontrate in D, che rappresenterebbe quindi lo stadio successivo. Qui infatti la densità degli individui è nettamente maggiore, superiori sono anche la taglia e il rigoglio vegetativo, il grado di fertilità.

Anche il popolamento dell’aggallato F appare in buone condizioni di sviluppo, sebbene con individui tutti sterili e dimensioni delle piante tendenzialmente costanti.

3. *Sparganium angustifolium* (fig. 8)

Gli individui dell’aggallato C sono pochi, piccoli e stentati, evidentemente al limite delle loro potenzialità di crescita. All’estremo opposto ci sono quelli di G (popolamento a lago), che crescono su un battente d’acqua di circa 50 cm e raggiungono pertanto maggiori dimensioni, con notevole sviluppo dell’apparato fogliare. In posizione intermedia troviamo gli altri due popolamenti (A e B), entrambi insediati su un battente d’acqua limitato a 20 cm circa. Gli individui di A, tuttavia, crescono sparsi nel folto dell’erioforetto, le dimensioni e il numero di foglie indicano condizioni di crescita non ottimali; più rigogliosi sono invece gli individui di B (popolamento puro), tra i quali se ne contano anche alcuni fertili.

La specie conferma di essere strettamente legata all’acqua: l’aumento di profondità del battente, entro certi limiti, pare non influire negativamente né sullo sviluppo della pianta (le foglie arrivano a misurare quasi 1 m di lunghezza) né sulle potenzialità riproduttive (sono state osservate piante in fiore sia vicino alla riva che in acque profonde). Il popolamento ha così potuto espandersi in modo omogeneo in tutto il lago, ad eccezione di un piccolo settore a maggiore profondità. *Sparganium angustifolium* svolge per-
tanto un ruolo primario nel processo d’interramento, per la notevole quantità di biomassa prodotta e la rapidità di diffusione per via vegetativa. Risulta significativo il fatto che, secondo quanto comunicatoci verbalmente, circa una dozzina di anni fa il lago venne interamente ripulito dalla vegetazione macrofitica: il popolamento attuale si è quindi ricostituito in questo limitato lasso di tempo, nonostante la brevità del periodo vegetativo a questa quota.

Fig. 21. Dati sui suoli dell’agglallato D e dello sparganieto G.
Sparganium angustifolium regredisce in situazioni di minore profondità dell’acqua, dove entra in competizione con Eriophorum angustifolium che tollera meglio tali condizioni. In questi casi, tuttavia, fattori particolari, spesso difficilmente valutabili, possono occasionalmente favorire l’una o l’altra specie, come si evince dal confronto tra A e B, spazialmente contigui e con uguale profondità dell’acqua. In A il substrato è ciottoloso e ciò potrebbe ostacolare lo sviluppo dei fragili stoloni di Sparganium angustifolium, mentre quelli più robusti di Eriophorum angustifolium ne risentirebbero in misura decisamente inferiore. Inoltre, osservando la fisionomia della torbiera, si ha l’impressione che i popolamenti più vicini a riva siano insediati in una sorta di canale serpeggiante fra gli agglomerati e i popolamenti ad Eriophorum, che assume l’aspetto di un ipotetico immissario. Mancando però evidenti apporti superficiali d’acqua, si può pensare ad apporti sotterranei in grado di creare leggere correnti o turbolenze sufficienti forse a limitare lo sviluppo degli Eriophorum.

ASPETTI PEDOLOGICI
I campioni degli agglomerati si inquadrano nei suoli organici, con assenza di scheletro ed elevato tenore di sostanza organica, che permane anche negli strati a maggiore profondità. Essi appartengono, secondo la Soil Taxonomy, all’ordine degli Histosols ed in particolare ai sottordini Fibrists ed Hemic, che includono suoli a materia organica poco evoluta nel primo caso e parzialmente umificata nel secondo, formatisi in ambienti perennemente o quasi saturi d’acqua. Si tratta di torbe, in questo caso di tipo oligotrofico, con pH acido, acque povere di Ca e rapporto C/N mediamente superiore a 30. In queste categorie può rientrare probabilmente anche il suolo dell’erioforeto, che mostra tuttavia un contenuto inferiore di sostanza organica.

Diversi sembrano invece i suoli sommersi raccolti in corrispondenza dei popolamenti a Sparganium, che hanno un contenuto organico ancora alto, ma con valori mediamente inferiori rispetto agli altri e concentrato soprattutto negli strati superiori (vedi, ad esempio, lo sparganieto G in fig. 21). Sono costituiti da una fanghiglia finissima di colore bruno-grigiastro, compatto, di consistenza plastica e priva di struttura. Sono inquadrabili nella categoria dei “gley”, suoli idromorfi costituiti da argille compatte, situati perennemente o periodicamente al di sotto del livello di falda, il cui colore deriva perlopiù dalle reazioni di riduzione in condizioni di anaerobiosi. Il contenuto discreto di sostanza organica, pur in assenza di materiale vegetale macroscopico, si potrebbe attribuire alla scarsa consistenza dei residui di Sparganium, assai poco fibrosi e quindi facili a decomporsi.

Molto bassa è la concentrazione di nutrienti, in accordo con le caratteristiche tipiche dei suoli organici ed idromorfi naturali: il contenuto di fosforo totale, in particolare, è quasi sempre inferiore alla soglia di “povertà” dello 0,1%, salvo rare eccezioni. Il contenuto di azoto è più variabile, e superiore alle attese date le caratteristiche dell’habitat. Il rapporto C/N varia infatti da valori di circa 30-35 negli aggallati più strutturati (D - F) a valori di 17-18 nel caso degli sparganieti B ed E. Ci si chiede se e quanto possa contribuire e a questa inaspettata ricchezza di azoto l’abbondanza di deiezioni presenti nelle aree intensamente pascolate attorno al lago.

In alcuni casi si rilevano variazioni tendenzialmente cicliche della quantità di sostanza organica in funzione della profondità di campionamento, che potrebbero attestare del ripetersi di episodi di alluvionamento della piana torbosa, con deposizione di materiali sabbiosi.

COMPOSIZIONE DELLE TORBE

Negli aggallati la torba è composta soprattutto da resti di briofite, risulta peraltro abbondante anche il materiale più o meno grossolano che deriva dal disfacimento delle *Cyperaceae*, specialmente di alcune porzioni (es. parti basali ingrossate di eriofori), fibrose (guaine, fusti, foglie) o rigide (otricelli di carice). Il materiale, di colore brunastro, resta in genere sufficientemente strutturato e riconoscibile, anche a maggiori profondità (vedi aggallati D e F).

In C è stato possibile compiere osservazioni solo sullo strato più superficiale: l’analisi ha evidenziato una composizione praticamente equivalente fra i residui di *Calliergon stramineum* e di *Warnstorfia exannulata*, con frammenti di lunghezza più variabile per quest’ultima. Negli altri due aggallati (D ed F) la torba è invece costituita soprattutto da resti di *Calliergon stramineum*: i campionamenti effettuati hanno infatti quasi sempre riguardato frammenti di questa specie, assolutamente dominante rispetto alle altre briofite (*Warnstorfia exannulata* e *Sphagnum subsecundum*). Tuttavia, in entrambi i casi, si ha un ribalamento del rapporto *Calliergon/Warnstorfia* nei campioni raccolti in profondità. Ciò, più che un reale modificarsi della composizione della torba, rivela il rapido disfacimento dei frammenti di *Calliergon stramineum* rispetto a quelli di *Warnstorfia exannulata* che, anche
per la presenza di stereidi nei fusti, è più robusta e resistente alla decomposizione. Ciò influenza, chiaramente, sulle condizioni e sui tempi secondo cui avvengono i processi di degradazione della sostanza organica.

Ciò è confermato dai grafici che correlano la lunghezza media dei frammenti con la profondità (fig. 19): si riconosce infatti una tendenza alla progressiva diminuzione delle dimensioni per tutte le specie, dovuta chiaramente al maggior grado di disfacimento. Per *Calliergon stramineum* e *Sphagnum subsecundum* il calo è regolare; quest'ultimo, in particolare, evidenzia un'ancor minore consistenza e resistenza alla disgregazione. Anche *Warnstorfia exannulata* segue più o meno lo stesso andamento, ma le dimensioni dei frammenti risultano mediamente sempre maggiori. Le curve sono peraltro più irregolari e ciò è dovuto essenzialmente allo scarso numero di campioni testato negli strati superiori, con maggior influenza del caso. In D, peraltro, si nota un andamento tendenzialmente sinusoidale, anche per *Calliergon* seppur meno evidente; questo è eventualmente da collegare a variazioni cicliche nella composizione del deposito torboso (periodi in cui prevalgono le piante vascolari alternati ad altri caratterizzati da dominanza di briebite) e probabilmente anche al ripetersi degli episodi di alluvionamento già citati in precedenza, a sottolineare un dinamismo con carattere di ciclicità della componente vegetazionale.

Bibliografia

S.I.S.S., 1985 - *Metodi normalizzati di analisi del suolo*. Edagricole, Bologna, 100 pp..

Lavoro pervenuto il 5.3.1999